第131部分(第1/4 頁)
斜砭惴執蟆⑿《�蕖�
……
國學網站推出後一頁前一頁回目錄回首頁後一頁前一頁回目錄回首頁志二十七
時憲八
凌犯視差新法上道光中,欽天監秋官正司廷棟所撰,較舊法加密,附著卷末,以備參考。
求用時
推諸曜之行度,皆以太陽為本;而太陽之實行,又以平行為根。其推步之法,總以每日子正為始,此言子正者,乃為平子正,即太陽平行之點臨於子正初刻之位也。今之推步時刻,雖以兩子正之實行為比例,而所得者亦皆平行所臨之點,則實行所臨之點,自有進退之殊。設太陽在最卑後實行大於平行,則太陽所臨之點必在平行之東,以時刻而言,乃為未及。若太陽過最高後實行小於平行,則太陽所臨之點必在平行之西,以時刻而言,乃為已過。故以應加之均數變時為應減之時差,應減之均數變時為應加之時差,此因太陽有平行實行之別,以生均數時差也。然太陽所行者黃道,時刻所據者赤道,因黃道與赤道斜交,則同升必有差度。如二分後赤道小於黃道,其差應減,在時刻為未及。二至後赤道大於黃道,其差應加,在時刻為已過。故以正弧三角形法求得黃赤升度差,變為時分,二分後為加,二至後為減,此因經度有黃道赤道之分,以生升度時差也。按本時之日行自行所生之二差,各加減於平時而得用時,由用時方可以推算他數,故交食亦必以推用時為首務,即日月食之第一求也。其法理圖說已載於考成前編,講解最詳,其圖分而為二,且均數時差圖系用小輪。至考成後編求均數改為橢圓法,其法理亦備悉於求均數篇內,然未言及時差。今依太陽實行所臨黃道之點,以均數之分取得黃道上平行點,即以平實二點依過二極、二至經圈作距等圈法,引於赤道,可使二差合為一圖。其太陽之經度所臨之時刻及二時差之加減,皆可按圖而稽矣。
如道光十二年壬辰三月初六日癸丑戌正二刻十一分,月與司怪第四星同黃道經度,是為凌犯時刻。本日太陽引數三宮三度五十五分,太陽黃道經度三宮十五度五十三分,求用時。如圖甲為北極,乙丙丁戊為赤道,乙甲丁為子午圈,乙為子正,丁為午正,己庚辛壬為黃道,丙甲戊為過二極二至經圈,己為冬至,辛為夏至,庚為春分,壬為秋分。子為太陽實行之點,當赤道於醜,則醜點即太陽實臨之用時。卯為太陽平行之點,而當赤道於辰。其卯子之分,即應加之均數一度五十五分四十五秒,試自卯子二點與丙甲戊過極至經圈平行作卯午、子未二線,即如距等圈,將太陽平行、實行之度皆引於赤道,則庚午必與庚卯等,庚未必與庚子等,其赤道之午未亦必與卯子均數等。變時得七分四十三秒,為赤道午未之分,即均數時差也。次用庚醜子正弧三角形求庚醜弧,此形有醜直角,有庚角黃赤交角二十三度二十九分,有庚子弧太陽距春分後黃道度十五度五十三分。乃以半徑為一率,庚角之餘弦為二率,庚子弧之正切為三率,求得四率為庚醜弧之正切,檢表得庚醜弧十四度三十七分三十六秒,為太陽距春分後赤道度。乃與庚子黃道弧相等之庚未弧相減,得醜未弧一度十五分二十四秒,為應減之黃赤升度差。變時得五分二秒,即升度時差也。蓋太陽平行卯點,距春分之庚卯弧與庚午弧等,則午點乃為平時,即今之凌犯時刻。而太陽實行子點,距春分之庚子與庚未弧等,則午未為平行與實行之差。如以太陽右旋而言之,為實行已過平行,然以隨天左旋而計之,為實行未及平行,是未點轉早於午點,故必減午未均數時差,乃得未點時刻,此太陽在黃道虛映於赤道之時刻也。然子點太陽實當赤道之醜,則醜未為黃道與赤道之差。若以經度東行而言之,為赤道未及黃道,茲以時刻西行而計之,為赤道已過黃道,是醜點復遲於未點,故必加醜未升度時差,方得醜點時刻,即太陽在黃道實當於赤道之時刻也