第124部分(第4/5 頁)
半徑一百四十八萬四千。
均輪半徑三十七萬一千。
最小次輪半徑六百三十萬二千七百五十。
本天高卑大差二十五萬八千五百。
太陽高卑大差二十三萬五千。
本道與黃道交角一度五十分。
火星平行應二宮十三度三十九分五十二秒十五微。
最高應八宮初度三十三分十一秒五十四微。
正交應四宮十七度五十一分五十四秒七微,餘見日躔。
推土、木、火星法
求天正冬至,同日躔。
求三星平行,以積日詳月離。與本星每日平行相乘,滿周天秒數去之,餘收為宮度分,為積日平行。以加本星平行應,得本星年根。上考則減。又置本星每日平行,以所求距天正冬至次日數乘之,得數與年根相併,得本星平行。
求三星最高行,以積日與本星最高日行相乘,得數以加本星最高應,得最高年根。上考則減。又置本星最高日行,以所求距天正冬至次日數乘之,得數與年根相併,得本星最高行。
求三星正交行,以積日與本星正交日行相乘,得數以加本星正交應,得正交年根。上考則減。又置本星正交日行,以所求距天正冬至次日數乘之,得數與年根相併,得本星正交行。
求三星初實行,置本星平行,減最高行,得引數。用平三角形,以均輪半徑減本輪半徑為對正角之邊,以引數為一角,求得對引數角之邊及對又一角之邊。又用平三角形,以對引數角之邊與均輪通弦相加求通弦法,詳月離。為小邊,以對又一角之邊與本天半徑相加減引數三宮至八宮相減,九宮至二宮相加。為大邊,正角在兩邊之中,求得對小邊之角為初均數。並求得對正角之邊為次輪心距地心線,以初均數加減本星平行,引數初宮至五宮減,六宮至十一宮加。得本星初實行。
求三星本道實行,置本日太陽實行減本星初實行,得次引。即距日度。用平三角形,以次輪心距地心線為一邊,次輪半徑為一邊,惟火星次輪半徑時時不同,求法詳後。次引為所夾之外角,過半周者與全周相減,用其餘。求得對次輪半徑之角為次均數,並求得對次引角之邊為星距地心線。乃以次均數加減初實行,加減與初均相反。得本星本道實行。求火星次輪實半徑,以火星本輪全徑命為二千萬為一率,本天高卑大差為二率,均輪心距最卑之正矢為三率,引數與半周相減,即均輪心距最卑度。求得四率為本天高卑差。又以太陽本輪全徑命為二千萬為一率,太陽高卑大差為二率,本日太陽引數之正矢為三率,引數過半周者與全周相減,用其餘。求得四率為太陽高卑差。乃置火星最小次輪半徑,以兩高卑差加之,得火星次輪實半徑。
求三星黃道實行,置本星初實行,減本星正交行,得距交實行。次輪心距正交。乃以本天半徑為一率,本道與黃道交角之餘弦為二率,距交實行之正切為三率,求得四率為正切。檢表得黃道度,與距交實行相減,得升度差,以加減本道實行,距交實行不過象限及過二象限為減,過象限及過三象限為加。得本星黃道實行。
求三星視緯,以本天半徑為一率,本道與黃道交角之正弦為二率,距交實行之正弦為三率,求得四率為正弦,檢表得初緯。又以本天半徑為一率,初緯之正弦為二率,次輪心距地心線為三率,求得四率為星距黃道線。乃以星距地心線為一率,星距黃道線為二率,本天半徑為三率,求得四率為正弦。檢表得本星視緯,隨定其南北。距交實行初宮至五宮為黃道北,六宮至十一宮為黃道南。
求黃道宿度及紀日,同日躔。
求交宮時刻,同月離。
求三星晨夕伏見定限度,視本星黃道實行與太陽實行同宮同度為合伏。合伏後距太陽漸遠,為晨見東方順行。
本章未完,點選下一頁繼續。